Plant-parasitic cyst nematodes secrete a complex of cell wall-digesting enzymes, which aid in root penetration and migration. The soybean cyst nematode Heterodera glycines also produces a cellulose binding protein (Hg CBP) secretory protein. To determine the function of CBP, an orthologous cDNA clone (Hs CBP) was isolated from the sugar beet cyst nematode Heterodera schachtii, which is able to infect Arabidopsis thaliana. CBP is expressed only in the early phases of feeding cell formation and not during the migratory phase. Transgenic Arabidopsis expressing Hs CBP developed longer roots and exhibited enhanced susceptibility to H. schachtii. A yeast two-hybrid screen identified Arabidopsis pectin methylesterase protein 3 (PME3) as strongly and specifically interacting with Hs CBP. Transgenic plants overexpressing PME3 also produced longer roots and exhibited increased susceptibility to H. schachtii, while a pme3 knockout mutant showed opposite phenotypes. Moreover, CBP overexpression increases PME3 activity in planta. Localization studies support the mode of action of PME3 as a cell wall-modifying enzyme. Expression of CBP in the pme3 knockout mutant revealed that PME3 is required but not the sole mechanism for CBP overexpression phenotype. These data indicate that CBP directly interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613657 | PMC |
http://dx.doi.org/10.1105/tpc.108.063065 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.
Soybean cyst nematode (SCN, ) is a devastating pest affecting soybean production worldwide. Host resistance is one of the primary practices used to manage SCN. The locus contributes to the strong and effective SCN resistance, with resistance levels predominantly governed by copy number variations (CNVs) and, to lesser extent, sequence variations.
View Article and Find Full Text PDFPlant Dis
December 2024
Northwest A&F University, College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China;
Cereal cyst nematodes spp., are important pathogens of wheat (Toumi et al. 2018).
View Article and Find Full Text PDFGenes (Basel)
November 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Plant Physiol
December 2024
National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
Low oxygen availability within plant cells arises during plant development but is exacerbated under environmental stress conditions. The group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factors have been identified as pivotal regulators in the hypoxia response to abiotic stress. However, their roles in transcriptional regulation during biotic stresses remain less defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!