Regulation of glucocorticoid sensitivity in thymocytes from burn-injured mice.

Am J Physiol Endocrinol Metab

Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada.

Published: January 2009

Glucocorticoids (GC) are important steroid hormones that regulate metabolism, development, and the immune system. GC are produced continuously, and maximal levels are reached following stress-related stimuli. Previous studies have demonstrated that increased GC production following thermal injury was responsible for thymic involution. Although GC are mainly synthesized by the adrenal glands, there is increasing evidence that GC may also be produced in nonadrenal tissues. The thymus was reported to express steroidogenic enzymes and to release GC. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is predominantly a reductase in cells and is essential for the local reactivation of GC. Here, we report that increased GC-induced apoptosis in thymocytes from burn-injured mice is related to increased glucocorticoid receptor (GR) expression and 11beta-HSD1 expression in thymocytes at day 1 postburn injury. In vitro, thymocytes were able to convert 11-dehydrocorticosterone (DHC) to corticosterone (CORT), which induced their apoptosis, and this was pharmacologically inhibited by 18beta-glycyrrhetinic acid, a specific 11beta-HSD inhibitor. Moreover, 11beta-HSD1 expression was confirmed in the 267S3 thymoma-derived cell line, and its activity was responsible for greater sensitivity of these cells to CORT-induced apoptosis. Finally, proinflammatory cytokines [tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-6] increased thymocyte sensitivity to DHC-induced apoptosis through a mechanism involving 11beta-HSD1. Overall, we have shown that burn injury induced 11beta-HSD1 expression in thymocytes, which led to a greater sensitivity of these cells to CORT-induced apoptosis. Increased expression of 11beta-HSD1 and GR may play a role in intrathymic T cell development and can be major determinants of GC sensitivity after a trauma.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.90582.2008DOI Listing

Publication Analysis

Top Keywords

11beta-hsd1 expression
12
thymocytes burn-injured
8
burn-injured mice
8
expression 11beta-hsd1
8
expression thymocytes
8
greater sensitivity
8
sensitivity cells
8
cells cort-induced
8
cort-induced apoptosis
8
11beta-hsd1
6

Similar Publications

Glucocorticoid receptors: The key of the response to steroid therapy in autoimmune hepatitis.

Clin Exp Hepatol

March 2024

Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt.

Aim Of The Study: This study was performed to investigate the hepatic expression of glucocorticoid receptors (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in pediatric autoimmune hepatitis (AIH) patients and its relation to the steroid response.

Material And Methods: This study included 100 patients diagnosed with AIH on immunosuppressive therapy with different responses to treatment. The patients were subjected to full history taking and thorough clinical examination, laboratory investigations, abdominal ultrasound and liver biopsy for histopathological evaluation and assessment of the hepatic expression of GR and 11β-HSD1.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Introduction: This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS) induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.

Methods: The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining.

View Article and Find Full Text PDF

Electrospun 11β-HSD1 Inhibitor-Loaded Scaffolds for Accelerating Diabetic Ulcer Healing.

ACS Appl Bio Mater

January 2025

Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Diabetic ulcers (DUs) are a common and severe complication of diabetes, characterized by impaired wound healing due to a complex pathophysiological mechanism. Elevated levels of 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in wounds have been demonstrated to modulate glucocorticoid activity, leading to delayed skin cell proliferation and restricted angiogenesis, ultimately hindering wound healing. In this study, we propose an electrospun poly(ε-caprolactone) (PCL) nanofiber scaffold doped with the 11β-HSD1 inhibitor BVT2733 (BPs) to prevent 11β-HSD1 activity during the diabetic wound healing process.

View Article and Find Full Text PDF

Fibroblasts play critical roles in tissue homeostasis, but in pathologic states they can drive fibrosis, inflammation, and tissue destruction. Little is known about what regulates the homeostatic functions of fibroblasts. Here, we perform RNA sequencing and identify a gene expression program in healthy synovial fibroblasts characterized by enhanced fatty acid metabolism and lipid transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!