Estrogen receptor (ER) beta regulates ERalpha expression in stromal cells derived from ovarian endometriosis.

J Clin Endocrinol Metab

Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, 303 East Superior Street, 4-123, Chicago, Illinois 60611, USA.

Published: February 2009

Context: Estradiol and its nuclear receptors, estrogen receptor (ER) alpha and ERbeta, play critical roles in endometrium and endometriosis. Levels of ERbeta, due to pathological hypomethylation of its promoter, are significantly higher in endometriotic vs. endometrial tissue and stromal cells, whereas ERalpha levels are lower in endometriosis. Estradiol regulates ERalpha gene expression via its alternatively used promoters A, B, and C.

Objective: The aim of the study was to determine whether high levels of ERbeta in endometriotic stromal cells from ovarian endometriomas regulate ERalpha gene expression.

Results: ERbeta knockdown significantly increased ERalpha mRNA and protein levels in endometriotic stromal cells. Conversely, ERbeta overexpression in endometrial stromal cells decreased ERalpha mRNA and protein levels. ERbeta knockdown significantly decreased proliferation of endometriotic stromal cells. Chromatin immunoprecipitation assays demonstrated that estradiol enhanced ERbeta binding to nonclassical activator protein 1 and specificity protein 1 motifs in the ERalpha gene promoters A and C and a classic estrogen response element in promoter B in endometriotic stromal cells.

Conclusions: High levels of ERbeta suppress ERalpha expression and response to estradiol in endometrial and endometriotic stromal cells via binding to classic and nonclassic DNA motifs in alternatively used ERalpha promoters. ERbeta also regulates cell cycle progression and might contribute to proliferation of endometriotic stromal cells. We speculate that a significantly increased ratio of ERbeta:ERalpha in endometriotic tissues may also suppress progesterone receptor expression and contribute to progesterone resistance. Thus, ERbeta may serve as a significant therapeutic target for endometriosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646522PMC
http://dx.doi.org/10.1210/jc.2008-1466DOI Listing

Publication Analysis

Top Keywords

stromal cells
32
endometriotic stromal
24
levels erbeta
16
eralpha gene
12
erbeta
10
eralpha
9
stromal
9
estrogen receptor
8
regulates eralpha
8
eralpha expression
8

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.

Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.

View Article and Find Full Text PDF

Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Estrogen, estrogen receptor and the tumor microenvironment of NSCLC.

Int J Cancer

January 2025

Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Lung cancer remains the foremost cause of cancer-related mortality worldwide. Clinical observations reveal a notable increase in both the proportion and mortality rate among female non-small cell lung cancer (NSCLC) patients compared to males, a trend that continues to escalate. Extensive preclinical research underscores the pivotal role of estrogen in the initiation, progression, prognosis, and treatment response of NSCLC.

View Article and Find Full Text PDF

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!