Angiogenesis, the formation of new blood vessels, plays a crucial role in normal physiological processes and in various pathological conditions. In the present study, we have investigated the physiological function of a newly described serine/threonine protein kinase D2 (PKD2) in aspects of endothelial cell biology involved in angiogenesis. We found that PKD2 was expressed in primary human endothelial cells from different tissues and was a critical PKD isoform mediating the phosphorylation of PKD substrates in endothelial cells. By using small interference RNAs that target different PKD2 regions, we found that silencing PKD2, but not PKD1 isoform, markedly inhibited the proliferation, migration, and in vitro angiogenesis of endothelial cells cultured in EGM-2 complete medium. We further showed that PKD2, but not PKD1, was required for the expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 that are two key growth factor receptors involved in angiogenesis. These findings indicate that PKD2 plays a pivotal role in endothelial cell proliferation and migration necessary for angiogenesis at least in part through modulation of the expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M807546200DOI Listing

Publication Analysis

Top Keywords

growth factor
20
endothelial cell
12
proliferation migration
12
endothelial cells
12
protein kinase
8
endothelial
8
cell proliferation
8
migration angiogenesis
8
involved angiogenesis
8
pkd2 pkd1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!