Amplitude equation and long-range interactions in underwater sand ripples in one dimension.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

Published: October 2008

We present an amplitude equation for sand ripples under oscillatory flow in a situation where the sand is moving in a narrow channel and the height profile is practically one dimensional. The equation has the form ht = - epsilon(h-h)+((hx)2-1)hxx-hxxxx+delta((hx)2)xx which, due to the first term, is neither completely local (it has long-range coupling through the average height h) nor has local sand conservation. We argue that this is reasonable and show that the equation compares well with experimental observations in narrow channels. We focus in particular on the so-called doubling transition, a secondary instability caused by the sudden decrease in the amplitude of the water motion, leading to the appearance of a new ripple in each trough. This transition is well reproduced for sufficiently large delta (asymmetry between trough and crest). We finally present surprising experimental results showing that long-range coupling is indeed seen in the initial details of the doubling transition, where in fact two small ripples are initially formed, followed by global symmetry breaking removing one of them.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.78.047301DOI Listing

Publication Analysis

Top Keywords

amplitude equation
8
sand ripples
8
long-range coupling
8
doubling transition
8
equation long-range
4
long-range interactions
4
interactions underwater
4
sand
4
underwater sand
4
ripples dimension
4

Similar Publications

: To evaluate the effectiveness of astigmatism correction between topographic- and manifest-based methods in individuals who underwent second-generation keratorefractive lenticule extraction (KLEx) surgery. : This study was conducted with participants who underwent second-generation KLEx surgery. After exclusion, there were 46 and 43 participants in the manifest and topographic groups, respectively.

View Article and Find Full Text PDF

Traditionally, excitation energies in coupled-cluster (CC) theory have been calculated by solving the CC Jacobian eigenvalue equation. However, based on our recent work [Jørgensen et al., Sci.

View Article and Find Full Text PDF

Evaluation of fatigue performance of asphalt materials based on their relaxation behavior.

Sci Rep

January 2025

Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.

Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.

View Article and Find Full Text PDF

In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball.

View Article and Find Full Text PDF

Fast barrier-free switching in synthetic antiferromagnets.

Sci Rep

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi, 54, 00044, Frascati, Italy.

We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be  pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!