Perturbational formulation of principal component analysis in molecular dynamics simulation.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan.

Published: October 2008

AI Article Synopsis

Article Abstract

Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.78.046702DOI Listing

Publication Analysis

Top Keywords

conformational distribution
16
distribution change
16
principal component
12
change perturbation
12
general applicability
12
physical meaning
12
perturbation functions
12
perturbation
10
pca
10
conformational
9

Similar Publications

Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants.

Protein Sci

February 2025

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA.

Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1) allosterically impact NF1 GAP to promote these distinct pathologies is unclear.

View Article and Find Full Text PDF

Genome-wide identification and functional characterization of CLG family genes reveal likely roles in epidermal development in Arabidopsis.

Plant Cell Rep

January 2025

Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.

We identified a CXCXCPXC motif and 11 CLG genes that regulate epidermal development by interacting with homeodomain leucine-zipper IV family proteins in Arabidopsis. Zinc finger proteins (ZFPs), the key regulators of plant growth and development, can be categorized based on the sequence patterns of zinc finger motifs. Here, by aligning the amino acid sequences of CFL1, AtCFL1, AtCFL2, GIRl, and GIR2, we identified the CXCXCPXC motif in their C-terminus, which differs from all the previously characterized canonical zinc finger motifs.

View Article and Find Full Text PDF

Rigorous Analysis of Multimodal HDX-MS Spectra.

J Am Soc Mass Spectrom

January 2025

Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States.

An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ - 42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes.

View Article and Find Full Text PDF

Insights into interaction mechanism between fibrinogen hydrolyzed peptides and myosin during gelation by molecular docking and molecular dynamic simulation.

Food Chem

January 2025

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China. Electronic address:

This study explored the role of fibrinogen hydrolyzed peptides in enhancing myosin thermal gelation properties. We investigated the impact of disrupted hydrophobic interactions and disulfide bonds on the characteristics of myosin-fibrinogen peptide composite gels using sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). Disrupted hydrophobic interactions led to decreased gel texture, water-holding capacity, rheological properties and irregular pore distribution, emphasizing their critical role in gel integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!