A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Constant flux relation for diffusion-limited cluster-cluster aggregation. | LitMetric

Constant flux relation for diffusion-limited cluster-cluster aggregation.

Phys Rev E Stat Nonlin Soft Matter Phys

Centre for Complexity Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.

Published: October 2008

In a nonequilibrium system, a constant flux relation (CFR) expresses the fact that a constant flux of a conserved quantity exactly determines the scaling of the particular correlation function linked to the flux of that conserved quantity. This is true regardless of whether mean-field theory is applicable or not. We focus on cluster-cluster aggregation and discuss the consequences of mass conservation for the steady state of aggregation models with a monomer source in the diffusion-limited regime. We derive the CFR for the flux-carrying correlation function for binary aggregation with a general scale-invariant kernel and show that this exponent is unique. It is independent of both the dimension and of the details of the spatial transport mechanism, a property which is very atypical in the diffusion-limited regime. We then discuss in detail the "locality criterion" which must be satisfied in order for the CFR scaling to be realizable. Locality may be checked explicitly for the mean-field Smoluchowski equation. We show that if it is satisfied at the mean-field level, it remains true over some finite range as one perturbatively decreases the dimension of the system below the critical dimension, d_{c}=2 , entering the fluctuation-dominated regime. We turn to numerical simulations to verify locality for a range of systems in one dimension which are, presumably, beyond the perturbative regime. Finally, we illustrate how the CFR scaling may break down as a result of a violation of locality or as a result of finite size effects and discuss the extent to which the results apply to higher order aggregation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.78.041403DOI Listing

Publication Analysis

Top Keywords

constant flux
12
flux relation
8
cluster-cluster aggregation
8
flux conserved
8
conserved quantity
8
correlation function
8
diffusion-limited regime
8
cfr scaling
8
aggregation
5
relation diffusion-limited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!