Velocity fluctuations in dense granular flows.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B8.

Published: October 2008

We use simulations to investigate velocity fluctuations in dry granular flow. Our system is comprised of mono- and polydisperse sets of spherical grains falling down a vertical chute under the influence of gravity. We find three different classes of velocity distributions depending on factors such as the local density. The class of the velocity distribution depends on whether the grains are in a free-fall, fluid, or glassy state. The analytic form of the distributions match those that have been found by other authors in fairly diverse systems. Here, we have all three present in a single system in steady state. Power-law tails that match recent experiments are also found but in a transition area suggesting they may be an artifact of crossover from one class of velocity distribution to another. We find evidence that the transition from one class to another may correspond to a second order dynamical phase transition in the limit that the vertical flow speed goes to zero.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.78.041304DOI Listing

Publication Analysis

Top Keywords

velocity fluctuations
8
class velocity
8
velocity distribution
8
velocity
5
fluctuations dense
4
dense granular
4
granular flows
4
flows simulations
4
simulations investigate
4
investigate velocity
4

Similar Publications

Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.

View Article and Find Full Text PDF

To promote the coordinated and sustainable development of hydropower exploitation and ecological environment in the upper reaches of the Yellow River, a fine simulation of the downstream riverway of Yangqu Hydropower Station was carried out to analyze the impact of the changes in water depth and flow velocity on fish habitats after the impoundment of Yangqu Hydropower Station. In this paper, was selected as the target fish species. The fish habitat model was constructed using MIKE21.

View Article and Find Full Text PDF

In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.

View Article and Find Full Text PDF

Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.

View Article and Find Full Text PDF

Comparative study of the variability of the phytoplankton biomass in two upwelling zones of the western Arabian Sea from 2003 to 2020.

Mar Pollut Bull

January 2025

National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:

This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!