Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656006PMC

Publication Analysis

Top Keywords

overlapping subsets
8
p-area taxonomy
8
hierarchy presented
8
concepts
5
auditing complex
4
complex concepts
4
concepts overlapping
4
subsets snomed
4
snomed limited
4
limited resources
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!