Effects of chitooligosaccharides on human red blood cell morphology and membrane protein structure.

Biomacromolecules

Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, P-4200-072 Porto, Portugal.

Published: December 2008

Recent studies of chitosan have increased the interest in its conversion to chitooligosaccharides (COSs) because these compounds are water-soluble and have potential use in several biomedical applications. Furthermore, such oligomers may be more advantageous than chitosans because of their much higher absorption profiles at the intestinal level, which permit their facilitated access to systemic circulation and potential distribution throughout the entire human body. In that perspective, it is important to clarify their effect on blood further, namely, on human red blood cells (RBCs). The aim of this work was thus to study the effect of two COS mixtures with different molecular weight (MW) ranges, <3 and <5 kDa, at various concentrations (5.0-0.005 mg/mL) on human RBCs. The interactions of these two mixtures with RBC membrane proteins and with hemoglobin were assessed, and the RBC morphology and surface structure were analyzed by optical microscopy (OM) and atomic force microscopy (AFM). In the presence of either COS mixture, no significant hemolysis was observed; however, at COS concentrations >0.1 mg/mL, changes in membrane binding hemoglobin were observed. Membrane protein changes were also observed with increasing COS concentration, including a reduction in both alpha- and beta-spectrin and in band 3 protein, and the development of three new protein bands: peroxiredoxin 2, calmodulin, and hemoglobin chains. Morphologic evaluation by OM showed that at high concentrations COSs interact with RBCs, leading to RBC adhesion, aggregation, or both. An increase in the roughness of the RBC surface with increasing COS concentration was observed by AFM. Overall, these findings suggest that COS damage to RBCs was dependent on the COS MW and concentration, and significant damage resulted from either a higher MW or a greater concentration (>0.1 mg/mL).

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm800622fDOI Listing

Publication Analysis

Top Keywords

human red
8
red blood
8
effects chitooligosaccharides
4
chitooligosaccharides human
4
blood cell
4
cell morphology
4
morphology membrane
4
membrane protein
4
protein structure
4
structure studies
4

Similar Publications

Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.

View Article and Find Full Text PDF

Increased plasma DOPA decarboxylase levels in Lewy body disorders are driven by dopaminergic treatment.

Nat Commun

January 2025

Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.

DOPA Decarboxylase (DDC) has been proposed as a cerebrospinal fluid (CSF) biomarker with increased concentrations in Lewy body disorders (LBDs) and highest levels in patients receiving dopaminergic treatment. Here we evaluate plasma DDC, measured by proximity extension assay, and the effect of dopaminergic treatment in three independent LBD (with a focus on dementia with Lewy bodies (DLB) and Parkinson's disease (PD)) cohorts: an autopsy-confirmed cohort (n = 71), a large multicenter, cross-dementia cohort (n = 1498) and a longitudinal cohort with detailed treatment information (n = 66, median follow-up time[IQR] = 4[4, 4] years). Plasma DDC was not altered between different LBDs and other disease groups or controls in absence of treatment.

View Article and Find Full Text PDF

Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components.

View Article and Find Full Text PDF

Fast is fine, but accuracy is everything: making intraoperative transfusion decisions using point-of-care testing.

Br J Anaesth

February 2025

Transfusion Research Unit, Department of Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia; Department of Clinical Haematology, Monash Health, Clayton, VIC, Australia.

Accurate and timely diagnostic information is a vital adjunct to clinical assessment to inform therapeutic decision-making, including decisions to transfuse, or not transfuse, blood components. A prospective cohort study of diagnostic point-of-care (POC) haemoglobin measurements on arterial or central venous samples from adults undergoing major noncardiac surgery compared three widely used devices, HemoCue®, i-STAT™, and the Rad-67™ pulse CO-Oxymeter® finger sensor device, against standard laboratory haemoglobin measurements, but importantly not against a blood gas analyser. The study focused on haemoglobin results below 100 g L to establish the utility of these devices to guide red cell transfusion decisions.

View Article and Find Full Text PDF

Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!