Using Bioluminescence Resonance Energy Transfer to measure ion channel assembly.

Methods Mol Biol

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.

Published: February 2009

Bioluminescence Resonance Energy Transfer (BRET) measures protein interactions within 10 nm of each other. Aside from its ability to probe for interactions at high resolution, this technique operates in live, intact cells, and offers a high throughput method of detection. Thus far, BRET has been widely used in measuring G protein receptor dimerization. In this chapter, we describe the BRET methodology in detail and apply this technique to the measurement of ion channel assembly. In addition, we discuss how BRET can be used to compare the extent of homomeric and heteromeric channel assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-526-8_15DOI Listing

Publication Analysis

Top Keywords

channel assembly
12
bioluminescence resonance
8
resonance energy
8
energy transfer
8
ion channel
8
transfer measure
4
measure ion
4
assembly bioluminescence
4
bret
4
transfer bret
4

Similar Publications

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

Constructing new-generation ion exchange membranes under confinement regime.

Natl Sci Rev

February 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.

View Article and Find Full Text PDF

Neuronal excitation-transcription (E-T) coupling pathways can be initiated by local increases of Ca concentrations within a nanodomain close to the L-type voltage-gated Ca channel (LTCC). However, molecular mechanisms controlling LTCC organization within the plasma membrane that help creation these localized signaling domains remain poorly characterized. Here, we report that neuronal depolarization increases Ca 1.

View Article and Find Full Text PDF

The vacuolar ATPase (V-ATPase; V V ) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase V proton channel subcomplex.

View Article and Find Full Text PDF

The organ-level molecular response to cardiac surgery with cardiopulmonary bypass (CPB) remains inadequately understood and may be heterogeneous. Here, we measured organ-specific gene expression in a piglet model of CPB with deep hypothermic circulatory arrest (DHCA). Infant piglets underwent peripheral CPB with 75min of DHCA and 6h of critical care after separation from CPB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!