MTH909 is the Methanothermobacter thermautotrophicus orthologue of Saccharomyces cerevisiae TAN1, which is required for N(4)-acetylcytidine formation in tRNA. The protein consists of an N-terminal near-ferredoxin-like domain and a C-terminal THUMP domain. Unlike most other proteins containing the THUMP domain, TAN1 lacks any catalytic domains and has been proposed to form a complex with a catalytic protein that is capable of making base modifications. MTH909 has been cloned, overexpressed and purified. The molecule exists as a monomer in solution. X-ray data were collected to 2.85 A resolution from a native crystal belonging to space group P6(1)22 (or P6(5)22), with unit-cell parameters a = 69.9, c = 408.5 A.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581707 | PMC |
http://dx.doi.org/10.1107/S1744309108034039 | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.
View Article and Find Full Text PDFPhysiol Plant
October 2024
Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China.
Adv Biochem Eng Biotechnol
October 2024
Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology.
View Article and Find Full Text PDFISME Commun
January 2024
Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 μl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 10-10 prokaryotic cells.
View Article and Find Full Text PDFLife (Basel)
July 2023
Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
Short- and medium-chain acyl-CoA synthetases catalyze similar two-step reactions in which acyl substrate and ATP bind to form an enzyme-bound acyl-adenylate, then CoA binds for formation of the acyl-CoA product. We investigated the roles of active site residues in CoA binding in acetyl-CoA synthetase (Acs) and a medium-chain acyl-CoA synthetase (Macs) that uses 2-methylbutyryl-CoA. Three highly conserved residues, Arg, Arg, and Arg of Acs (Acs), are predicted to form important interactions with the 5'- and 3'-phosphate groups of CoA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!