Inflammatory Bowel Disease (IBD) is partly caused by oxidative stress from free radicals and reduced antioxidant levels. Using hydrogen peroxide to induce oxidative stress in vitro in peripheral lymphocytes we investigated the induction of DNA damage supplemented with ethanolic extract of Chaga mushroom as a protective antioxidant. Lymphocytes were obtained from 20 IBD patients and 20 healthy volunteers. For treatment, a constant H_{2}O_{2 } dose (50 microg/ml) was used with variable doses of Chaga extract (10-500 microg/ml). DNA damage was evaluated in 50 cells per individual and dose using the Comet assay (making 1000 observations per experimental point ensuring appropriate statistical power). Chaga supplementation resulted in a 54.9% (p < 0.001) reduction of H_{2}O_{2 } induced DNA damage within the patient group and 34.9% (p < 0.001) within the control group. Lymphocytes from Crohn's disease (CD) patients had a greater basic DNA damage than Ulcerative Colitis (UC) patients (p < 0.001). Conclusively, Chaga extract reduces oxidative stress in lymphocytes from IBD patients and also healthy individuals when challenged in vitro. Thus, Chaga extract could be a possible and valuable supplement to inhibit oxidative stress in general.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.5520310306DOI Listing

Publication Analysis

Top Keywords

dna damage
20
oxidative stress
16
chaga extract
12
chaga mushroom
8
inflammatory bowel
8
bowel disease
8
lymphocytes ibd
8
ibd patients
8
patients healthy
8
chaga
6

Similar Publications

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

Compensatory effect-based oxidative stress management microneedle for psoriasis treatment.

Bioact Mater

April 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.

Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects.

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Chloride intracellular channel CLIC3 mediates fibroblast cellular senescence by interacting with ERK7.

Commun Biol

January 2025

Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.

Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!