Cyclophosphamide (CYC) can control diffuse proliferative lupus nephritis (DPLN) by potent immunosuppression but remains associated with serious and life-threatening complications. Drugs that specifically target mediators of DPLN may help to reduce CYC dose and side effects. Monocyte chemoattractant protein (MCP-1)/CCL2 mediates monocyte and T cell recruitment in DPLN and Ccl2-specific l-enantiomeric RNA Spiegelmer mNOX-E36 neutralizes the biological effects of murine Ccl2 in vitro and in vivo. We injected MRL(lpr/lpr) mice with DPLN from 14 weeks of age with vehicle, weekly 30 mg/kg CYC (full dose), monthly 30 mg/kg CYC (one-fourth full dose), pegylated control Spiegelmer, pegylated anti-Ccl2 Spiegelmer (3/week), pegylated anti-Ccl2 Spiegelmer plus CYC one-fourth full dose and mycophenolate mofetil. At week 24, DPLN and autoimmune lung injury were virtually abolished with CYC full dose but not with CYC one-fourth full dose. The CYC one-fourth full dose/Spiegelmer combination was equipotent to CYC full dose on kidney and lung injury. CD3(+)CD4(-)CD8(-) and CD3(+)CD4(+)CD25(+) T cells and serum interleukin-12p40 and tumor necrosis factor-alpha levels were all markedly affected by CYC full dose but not by CYC one-fourth full dose. No additive effects of anti-Ccl2 Spiegelmer were noted on bone marrow colony-forming unit-granulocyte macrophage counts and 7/4(high) monocyte counts, lymphoproliferation, and spleen T cell depletion. In summary, anti-Ccl2 Spiegelmer permits 75% dose reduction of CYC for controlling DPLN and pneumonitis in MRL-Fas(lpr) mice, sparing suppressive effects of full-dose CYC on myelosuppression and T cell depletion. We propose anti-Ccl2 Spiegelmer therapy as a novel strategy to reduce CYC toxicity in the treatment of severe lupus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.108.142711 | DOI Listing |
Phys Med
January 2025
National Co-ordinating Centre for the Physics of Mammography (NCCPM), Medical Physics Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX UK.
Background: The American Association of Physicists in Medicine (AAPM) Task group 282 (TG282) in collaboration with the European Federation for Organisations of Medical Physics (EFOMP) have developed a novel breast dosimetry model intended as a single international standard.
Purpose: To explore the impact of TG282 dosimetry on estimates of average Mean Glandular Dose (MGD) in the United Kingdom (UK) National Health Service (NHS) Breast Screening Programmes (BSP).
Methods: MGDs were estimated, using the TG282 dosimetry model, for the most recent UK NHSBSP dose survey.
Muscle Nerve
January 2025
Department of Anatomy, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil.
Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.
Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.
J Biol Methods
October 2024
University of Texas Rio Grande Valley School of Medicine, 1201 West University Drive, Edinburg, TX 78539, USA.
Background: This is the first study to examine a cohort that engages in the practice of immunization with snake venoms. In this practice, either fresh wet venom or venom reconstituted from freeze-dried form is used in vaccination protocols to produce hyper-immunity to venom.
Methods: This is a retrospective community-initiated collaborative research (CICR) project that collated the records of venom immunization.
Background: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
Background: Dedicated breast computed tomography (bCT) systems offer detailed imaging for breast cancer diagnosis and treatment. As new bCT generations are developed, it is important to evaluate their imaging performance and dose efficiency to understand differences over previous models.
Purpose: To characterize the imaging performance and dose efficiency of a second-generation (GEN2) bCT system and compare them to those of a first-generation (GEN1) system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!