The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs.

Mol Pharmacol

Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.

Published: February 2009

The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggesting that its contribution to influx was likely to be on the initial phase of drug entry. Loss of CTR1 decreased the initial binding of DDP to cells and reduced influx measured over the first 5 min of drug exposure by 81%. Loss of CTR1 almost completely eliminated the initial influx of CBDCA and reduced the initial uptake of L-OHP by 68% but had no effect on the influx of transplatin. Loss of CTR1 rendered cells resistant to even high concentrations of DDP when measured in vitro, and re-expression of CTR1 in the CTR1(-/-) cells restored both DDP uptake and cytotoxicity. The growth of CTR1(-/-) tumor xenografts in which CTR1 levels were restored by infection with a lentivirus expressing wild-type CTR1 was reduced by a single maximum tolerated dose of DDP in vivo, whereas the CTR1(-/-) xenografts failed to respond at all. We conclude that CTR1 mediates the initial influx of DDP, CBDCA, and L-OHP and is a major determinant of responsiveness to DDP both in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684896PMC
http://dx.doi.org/10.1124/mol.108.052381DOI Listing

Publication Analysis

Top Keywords

loss ctr1
12
ctr1
10
mammalian copper
8
copper transporter
8
ddp
8
initial influx
8
influx
6
initial
5
role mammalian
4
transporter cellular
4

Similar Publications

Altered copper transport in oxidative stress-dependent brain endothelial barrier dysfunction associated with Alzheimer's disease.

Vascul Pharmacol

December 2024

Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912; Department of Pharmacology and Toxicology, Medical College of, Georgia, at Augusta University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, United States of America. Electronic address:

Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aβ) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear.

View Article and Find Full Text PDF

Unlabelled: Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aβ) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear.

View Article and Find Full Text PDF

Plumbagin's Antiproliferative Mechanism in Human Cancer Cells: A Copper-Dependent Cytotoxic Approach.

Chem Biol Drug Des

August 2024

Department of Life Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.

Cancer is a serious global health problem, causing the loss of millions of lives each year. Plumbagin, a compound derived from the medicinal plant Plumbago zeylanica, has shown promise in stopping the growth of tumor cells both in laboratory settings and in living organisms. Many plant-based compounds exert their effects through copper's ability to produce reactive oxygen species (ROS).

View Article and Find Full Text PDF

Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3).

View Article and Find Full Text PDF

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( and ) and a related soluble cysteine-rich protein (CTR3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!