A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. | LitMetric

Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity.

Biomaterials

School of Chemistry and Molecular Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea.

Published: February 2009

We synthesized biodegradable polycationic PAMAM (polyamidoamine) esters (e-PAM-R, e-PAM-K) that contain arginines or lysines at the peripheral ends of PAMAM-OH dendrimer through ester bond linkages. The PAMAM esters were readily degradable under physiological conditions (pH 7.4, 37 degrees C), with more than 50% of the grafted amino acids hydrolyzed within 5h. However, polyplexes were very stable and were hardly degraded in the endosomal pH range. Moreover, these amino-acid-modified polymers showed excellent buffering capacities between pH 5.1 and 7.4, facilitating endosomal escape of polyplexes. While the lysine-grafted PAMAM ester did not display significant improvement in transfection efficiency, the arginine-conjugated PAMAM ester-mediated transfection of a luciferase gene showed better transfection efficiency than the branched 25 kDa PEI (polyethylenimine) and PAM-R (peptide bond), and lower cytotoxicity, especially with primary cells such as HUVECs (human umbilical vein endothelial cells) and SMCs (primary rat aorta vascular smooth muscle cells). Furthermore, after DNA release, free e-PAM-R degraded completely into nontoxic PAMAM-OH and arginines by hydrolysis, which resulted in lower cytotoxicity in contrast to the poorly degradable arginine-modified PAMAM with amide bonds. These findings demonstrated that the arginine-grafted biodegradable PAMAM dendrimer, e-PAM-R, is a potential candidate as a safe and efficient gene delivery carrier for gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.10.013DOI Listing

Publication Analysis

Top Keywords

transfection efficiency
12
biodegradable pamam
8
pamam ester
8
lower cytotoxicity
8
pamam
6
ester enhanced
4
transfection
4
enhanced transfection
4
efficiency low
4
low cytotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!