Anion-exchange with high perchlorate affinity resins is one of the most promising technologies for removing low levels of perchlorate. However, the traditional brine desorption technique is difficult and costly for regeneration of this type of resin. Previously, a direct bio-regeneration method by contacting the spent high perchlorate affinity resin with the perchlorate-reducing bacteria was proved feasible. This research is a further study of that method. Firstly, a direct bio-regeneration process model, based on the physicochemical and biological fundamentals, was developed and calibrated with experimental data. Thereafter, the rate-limiting step in regeneration of the high perchlorate affinity resin was investigated. Methods to enhance the regeneration efficiency were developed. The results indicated that the calibrated model well described the regeneration process. It thus might provide useful insights into the regeneration system. The results also demonstrated that the perchlorate desorption from the loaded resin could be the rate-limiting step. Addition of proper amount of counter anions such as chloride and sulfate improved the regeneration efficiency because these anions could promote both the extent and rate of perchlorate desorption from the loaded resin. These findings aided us in achieving good and efficient regeneration of high perchlorate affinity resins like the A-530E and SR-7 resins. The findings also suggested that the application of bacteria that could efficiently reduce perchlorate in highly saline solution would make the method more promising for the regeneration of high perchlorate affinity resins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2008.10.012 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO/PC (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China.
Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Xinjiang Medical University, Urumqi, China. Electronic address:
Objectives: Perchlorates, nitrates, and thiocyanates constitute environmental endocrine disruptors; however, health damage caused by absorption through the respiratory tract remains poorly studied. We investigated the effects of inhalation of these pollutants on thyroid function and structure and serum metabolomics in pregnant rats.
Methods: We established a Sprague-Dawley pregnant rat model exposed to perchlorate, nitrate, and thiocyanate at different gestational stages and compared maternal serum thyroid function levels, foetal development, thyroid morphology, and pathological changes between exposed and non-exposed groups at different concentrations.
J Chem Phys
December 2024
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!