Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system. Using quantitative mass spectrometry of ubiquitin, we found that in S. cerevisiae under normal growth conditions the majority of conjugated ubiquitin was linked via lysine 48 and lysine 63. In contrast, upon DSK2 induction, conjugates accumulated primarily in the form of lysine 48 linkages correlating with impaired proteolysis and cytotoxicity. By restricting Dsk2 access to the proteasome, extraproteasomal Rpn10 was essential for alleviating the cellular stress associated with Dsk2. This work highlights the importance of polyubiquitin shuttles such as Rpn10 and Dsk2 in controlling the ubiquitin landscape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643056 | PMC |
http://dx.doi.org/10.1016/j.molcel.2008.10.011 | DOI Listing |
Biochem J
September 2013
Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary.
The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I).
View Article and Find Full Text PDFBiochemistry
March 2012
Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
Analysis of the in vivo ubiquitylation of the p54/Rpn10 polyubiquitin receptor subunit of the Drosophila 26S proteasome revealed that the site of ubiquitylation is the C-terminal cluster of lysines, which is conserved in higher eukaryotes. Extraproteasomal p54 was extensively multiubiquitylated, but only very modest modification was detected in the proteasome-assembled subunit. Ubiquitylation of p54 seriously jeopardizes one of its most important functions, i.
View Article and Find Full Text PDFFEBS J
December 2011
Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
Polyubiquitin receptors execute the targeting of polyubiquitylated proteins to the 26S proteasome. In vitro studies indicate that disturbance of the physiological balance among different receptor proteins impairs the proteasomal degradation of polyubiquitylated proteins. To study the physiological consequences of shifting the in vivo equilibrium between the p54/Rpn10 proteasomal and the Dsk2/dUbqln extraproteasomal polyubiquitin receptors, transgenic Drosophila lines were constructed in which the overexpression or RNA interference-mediated silencing of these receptors can be induced.
View Article and Find Full Text PDFJ Cell Sci
September 2009
Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
Recognition of polyubiquitylated substrates by the proteasome is a highly regulated process that requires polyubiquitin receptors. We show here that the concentrations of the proteasomal and extraproteasomal polyubiquitin receptors change in a developmentally regulated fashion. The stoichiometry of the proteasomal p54/Rpn10 polyubiquitin receptor subunit, relative to that of other regulatory particle (RP) subunits falls suddenly at the end of embryogenesis, remains low throughout the larval stages, starts to increase again in the late third instar larvae and remains high in the pupae, adults and embryos.
View Article and Find Full Text PDFMol Cell
November 2008
Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!