Alzheimer's disease, which is characterized by amyloid plaques and neurofibrillary tangles, may be attributed to the abnormal expression of gene(s) located on human chromosome 21. Genetic linkage studies have narrowed the region of candidate genes to 21q11.2-21q22 of the long arm of this chromosome. Several single copy sequences within this region, including the amyloid precursor protein (APP), have been mapped to mouse chromosome 16. Reliable strategies exist for breeding Trisomy 16 mice. However, the consequences of developmental overexpression of genes on chromosome 16 have not been previously investigated, because of the lethal effects of this aneuploidy during gestation. In the present report, we employ neural transplantation to study long-term survival and pathogenesis in Trisomy 16 central nervous system tissues. Immunocytochemical staining with antiserum raised against the synthetic APP, beta-A4 and alpha 1-antichymotrypsin revealed numerous densely stained cells within hippocampal grafts of Trisomy 16 mice. Similarly, a population of grafted cells were positively stained following incubation with an antiserum raised against components of the pathological neurofibrillary tangle and with the monoclonal antibodies Tau 6.423 and ubiquitin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452646PMC
http://dx.doi.org/10.1002/j.1460-2075.1991.tb07950.xDOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
trisomy mice
8
antiserum raised
8
transplants mouse
4
trisomy
4
mouse trisomy
4
trisomy hippocampus
4
hippocampus provide
4
provide model
4
model alzheimer's
4

Similar Publications

Background: Research has shown that engaging in a range of healthy lifestyles or behavioral factors can help reduce the risk of developing dementia. Improved knowledge of modifiable risk factors for dementia may help engage people to reduce their risk, with beneficial impacts on individual and public health. Moreover, many guidelines emphasize the importance of providing education and web-based resources for dementia prevention.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!