Reaction networks are viewed as derived from ordinary molecular structures related in reactant-product pairs so as to manifest a chemical super-structure. Such super-structures then are candidates for applications in a general combinatoric chemistry. Notable additional characterization of a reaction super-structure occurs when such reaction graphs are directed, as for example when there is progressive substitution (or addition) on a fixed molecular skeleton. Such a set of partially ordered entities is in mathematics termed a poset, which further manifests a number of special properties, as then might be utilized in different applications. Focus on the overall "super-structural" poset goes beyond ordinary molecular structure in attending to how a structure fits into a (reaction) network, and thereby brings an extra "dimension" to conventional stereochemical theory. The possibility that different molecular properties vary smoothly along chains of interconnections in such a super-structure is a natural assumption for a novel approach to molecular property and bioactivity correlations. Different manners to interpolate/extrapolate on a poset network yield quantitative super-structure/activity relationships (QSSARs), with some numerical fits, e.g., for properties of polychlorinated biphenyls (PCBs) seemingly being quite reasonable. There seems to be promise for combinatoric posetic ideas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138620708786306050 | DOI Listing |
Curr Issues Mol Biol
December 2024
College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.
To clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. Some cloning vectors have been developed for the cloning of PCR products, including blunt-end and T-A cloning. However, different plasmids are required for the cloning of PCR products with blunt ends and 3' A overhang ends.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India.
AI-optimized electrochemical aptasensors are transforming diagnostic testing by offering high sensitivity, selectivity, and rapid response times. Leveraging data-driven AI techniques, these sensors provide a non-invasive, cost-effective alternative to traditional methods, with applications in detecting molecular biomarkers for neurodegenerative diseases, cancer, and coronavirus. The performance metrics outlined in the comparative table illustrate the significant advancements enabled by AI integration.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands.
Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northwestern Polytechnical University, School of Chemistry and Chemical Engineering, CHINA.
The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait.
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!