Crystalline purple [PPh4][FeIIIL2] (1), where L2- represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2L and FeBr2 (2:1) in acetonitrile with excess NEt3, careful, brief exposure of the solution to air, and addition of [PPh4]Br. The monoanion has been shown by X-ray crystallography to be square planar. The oxidation of 1 with 1 equiv of iodine produces the neutral species [FeI(L*)2]0 (2) where (L*)1- represents the one-electron oxidized pi radical anion of L2-. The reaction of H2Land PtCl2 (2:1) and NEt3 in CH3CN in the presence of air produced green, crystalline [PtII(L*)2] (3). From temperature dependent(2-300 K) magnetic susceptibility measurements, it was established that 1 possesses a central intermediate spin ferric ion (SFe ) 3/2), whereas neutral 2 has a doublet ground state (St ) 1/2) comprising an intermediate spin ferric ion coupled antiferromagnetically to two ligand pi radicals (L*)1- (Srad ) 1/2). Complex 3 is diamagnetic. Almeida et al.'s complexes in ref 1, [N(n-Bu)4][FeIII(qdt)2] (A), and [PPh4]2[FeIII2(qdt)4] (B), have been revisited. It is shown here that the square planar anion in mononuclear [FeIII(qdt)2]- also possesses an SFe ) 3/2 ground state. The zero-field Mössbauer spectra of 1, 2, A, and B have been recorded and the molecular and electronic structures of all mononuclear iron species have been calculated by density functional theoretical methods.It is shown that the S ) 3/2 ground state in 1 and A is lower in energy by 8.5 and 16.6 kcal mol(-1), respectively,than the S ) 1/2 state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic801109nDOI Listing

Publication Analysis

Top Keywords

square planar
12
ground state
12
molecular electronic
8
intermediate spin
8
spin ferric
8
ferric ion
8
sfe 3/2
8
3/2 ground
8
electronic structure
4
structure square
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!