Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transport kinetics of the positively charged triphenylmethane dye, malachite green (MG(+)), across liposome bilayers effects the transport of monovalent inorganic cations when ionophores are present in the membrane. Three different types of ionophores characterized by different transport mechanisms have been studied. The ionophores are gramicidin A (gA) (a channel former), valinomycin (VAL) (a lipophilic cyclopeptide that encloses an alkali ion), and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) (a weak acid that functions as a protonophore). The effects of these ionophores on the kinetics and extent of MG(+) crossing into the liposome, investigated using the interface selective second harmonic generation method, were found to be markedly different.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp806690z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!