The polarization dependence (linear dichroism) of the C 1s X-ray absorption spectrum of individual multi-walled carbon nanotubes (MWCNTs) is measured using scanning transmission X-ray microscopy. A very strong dichroic effect is found in the C 1s --> pi* transition, with almost complete disappearance of this transition when the electric-field (E)-vector is aligned parallel to high-quality (low-defect) MWCNTs and maximum intensity when the E-vector is orthogonal to the tube axis. In contrast, there is very little dichroism in the C 1s --> sigma* transitions. The origin of this polarization effect is explained. The magnitude of the polarization dependence is found to differ in MWCNTs synthesized by different methods (arc discharge versus chemical vapor deposition). This is ascribed to differences in densities of sp(2)-type defects. The potential for use of this signal to characterize defects in single-carbon-nanotube devices is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200800439DOI Listing

Publication Analysis

Top Keywords

polarization dependence
12
x-ray absorption
8
individual multi-walled
8
multi-walled carbon
8
carbon nanotubes
8
polarization
4
dependence x-ray
4
absorption spectra
4
spectra individual
4
nanotubes polarization
4

Similar Publications

Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored.

View Article and Find Full Text PDF

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.

View Article and Find Full Text PDF

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Covalent organic nanotubes offer enhanced stability, robustness, and functionality, compared to their noncovalent counterparts. This study explores constructing polydiacetylene (PDA) nanotubes using a two-step process: self-assembly via noncovalent interactions followed by UV-induced polymerization of a diacetylene template. A promising building block consisting of a hydrogen-bonding headgroup, barbituric acid, linked to a linear diacetylene chain was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!