Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT's antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus' reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT's proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand-, caspase-8-, or caspase-10-dependent pathway) or the intrinsic (mitochondria-, caspase-9-dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(-) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(-) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980827 | PMC |
http://dx.doi.org/10.1080/13550280802216510 | DOI Listing |
Infect Immun
December 2024
Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil.
Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of () are closely linked to intracellular residency within macrophages. Our previous work showed that murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active , with striking differences in immunometabolic gene expression.
View Article and Find Full Text PDFUnlabelled: Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype.
View Article and Find Full Text PDFCancer Res
December 2024
The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Urology, Weill Cornell Medicine, New York, NY, USA.
The androgen receptor (AR) is central in prostate tissue identity and differentiation, and controls normal growth-suppressive, prostate-specific gene expression. It also drives prostate tumorigenesis when hijacked for oncogenic transcription. The execution of growth-suppressive AR transcriptional programs in prostate cancer (PCa) and the potential for reactivation remain unclear.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:
Sandhoff disease, a lysosomal storage disorder, is caused by pathogenic variants in the HEXB gene, resulting in the loss of β-hexosaminidase activity and accumulation of sphingolipids including GM2 ganglioside. This accumulation occurs primarily in neurons, and leads to progressive neurodegeneration through a largely unknown process. Lysosomal storage diseases often exhibit dysfunctional mTOR signaling, a pathway crucial for proper neuronal development and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!