Nidus vespae protein inhibiting proliferation of HepG2 hepatoma cells through extracellular signal-regulated kinase signaling pathways and inducing G1 cell cycle arrest.

Acta Biochim Biophys Sin (Shanghai)

China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, the Key Laboratory of Molecular Biophysics of Ministry of Education, College of life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: November 2008

A protein named NVP(1) was isolated from Nidus vespae. The aim of the present study was to elucidate whether and how NVP(1) modulates the proliferation of HepG2 cells. NVP(1) at a concentration of 6.6 microg/ml could arrest the cell cycle at stage G1 and inhibit the mRNA expression of cyclinB, cyclinD1 and cyclinE. NVP(1) suppressed cdk2 protein expression, but increased p27 and p21 protein expression. However, NVP(1) did not alter p16 protein expression levels. NVP(1) promoted apoptosis in HepG2 cells as indicated by nuclear chromatin condensation, and in addition, the extracellular signal-regulated kinase (ERK) signaling pathway was activated. Moreover, the p-ERK protein expression level was attenuated when the HepG2 cells were pretreated with ERK inhibitor PD98059. These results demonstrate that NVP(1) inhibits proliferation of HepG2 through ERK signaling pathway. NVP(1) could be a potential drug for liver cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-7270.2008.00476.xDOI Listing

Publication Analysis

Top Keywords

protein expression
16
proliferation hepg2
12
hepg2 cells
12
nidus vespae
8
extracellular signal-regulated
8
signal-regulated kinase
8
cell cycle
8
nvp1
8
erk signaling
8
signaling pathway
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!