The emergence of omics technologies allowing the global analysis of a given biological or molecular system, rather than the study of its individual components, has revolutionized biomedical research, including cardiovascular medicine research in the past decade. These developments raised the prospect that classical, hypothesis-driven, single gene-based approaches may soon become obsolete. The experience accumulated so far, however, indicates that omic technologies only represent tools similar to those classically used by scientists in the past and nowadays, to make hypothesis and build models, with the main difference that they generate large amounts of unbiased information. Thus, omics and classical hypothesis-driven research are rather complementary approaches with the potential to effectively synergize to boost research in many fields, including cardiovascular medicine. In this article we discuss some general aspects of omics approaches, and review contributions in three areas of vascular biology, thrombosis and haemostasis, atherosclerosis and angiogenesis, in which omics approaches have already been applied (vasculomics).

Download full-text PDF

Source

Publication Analysis

Top Keywords

vascular biology
8
including cardiovascular
8
cardiovascular medicine
8
classical hypothesis-driven
8
omics approaches
8
omics
5
omics meets
4
meets hypothesis-driven
4
hypothesis-driven partnership
4
partnership innovative
4

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

The sarcoma ring trial: a case-based analysis of inter-center agreement across 21 German-speaking sarcoma centers.

J Cancer Res Clin Oncol

January 2025

Sarcoma Unit, Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Purpose: The management of soft tissue sarcoma (STS) at reference centers with specialized multidisciplinary tumor boards (MTB) improves patient survival. The German Cancer Society (DKG) certifies sarcoma centers in German-speaking countries, promoting high standards of care. This study investigated the variability in treatment recommendations for localized STS across different German-speaking tertiary sarcoma centers.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation.

Cytokine

January 2025

College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, The Islamic University of Al Diwaniyah, Diwaniya, Iraq; College of technical engineering, The Islamic University of Babylon, Hillah, Iraq.

Inflammation, driven by various stimuli such as pathogens, cellular damage, or vascular injury, plays a central role in numerous acute and chronic conditions. Current treatments are being re-evaluated, prompting interest in naturally occurring compounds like kaempferol, a flavonoid prevalent in fruits and vegetables, for their anti-inflammatory properties. This study explores the therapeutic potential of kaempferol, focusing on its ability to modulate pro-inflammatory cytokines and its broader effects on inflammatory signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!