Efficient algorithms to explore conformation spaces of flexible protein loops.

IEEE/ACM Trans Comput Biol Bioinform

Computer Science Department, Stanford University, S240 Clark Center, 318 Campus Drive, Stanford, CA 94305, USA.

Published: January 2009

Several applications in biology - e.g., incorporation of protein flexibility in ligand docking algorithms, interpretation of fuzzy X-ray crystallographic data, and homology modeling - require computing the internal parameters of a flexible fragment (usually, a loop) of a protein in order to connect its termini to the rest of the protein without causing any steric clash. One must often sample many such conformations in order to explore and adequately represent the conformational range of the studied loop. While sampling must be fast, it is made difficult by the fact that two conflicting constraints - kinematic closure and clash avoidance - must be satisfied concurrently. This paper describes two efficient and complementary sampling algorithms to explore the space of closed clash-free conformations of a flexible protein loop. The "seed sampling" algorithm samples broadly from this space, while the "deformation sampling" algorithm uses seed conformations as starting points to explore the conformation space around them at a finer grain. Computational results are presented for various loops ranging from 5 to 25 residues. More specific results also show that the combination of the sampling algorithms with a functional site prediction software (FEATURE) makes it possible to compute and recognize calcium-binding loop conformations. The sampling algorithms are implemented in a toolkit (LoopTK), which is available at https://simtk.org/home/looptk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794838PMC
http://dx.doi.org/10.1109/TCBB.2008.96DOI Listing

Publication Analysis

Top Keywords

sampling algorithms
12
algorithms explore
8
explore conformation
8
flexible protein
8
sampling" algorithm
8
protein
5
efficient algorithms
4
explore
4
conformation spaces
4
spaces flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!