We present a novel approach for the direct computation of integral surfaces in time-dependent vector fields. As opposed to previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages: surface approximation and generation of a graphical representation. This allows us to overcome several limitations of existing techniques. We first describe an algorithm for surface integration that approximates a series of time lines using iterative refinement and computes a skeleton of the integral surface. In a second step, we generate a well-conditioned triangulation. Our approach allows a highly accurate treatment of very large time-varying vector fields in an efficient, streaming fashion. We examine the properties of the presented methods on several example datasets and perform a numerical study of its correctness and accuracy. Finally, we investigate some visualization aspects of integral surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2008.133 | DOI Listing |
Mikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India.
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Earth Sciences, Yunnan University, Kunming, 650500, China.
Rocky desertification (RD) is a severe phenomenon in karst areas, often referred to as "ecological cancer." However, studies on RD rarely include comparative analysis of different man-land relationship areas. This lack of analysis leads to difficulties in preventing and controlling RD in local areas with complex man-land relationships.
View Article and Find Full Text PDFNanoscale
January 2025
AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!