In vivo visualization of endogenous neural progenitor cells (NPCs) is crucial to advance stem cell research and will be essential to ensure the safety and efficacy of neurogenesis-based therapies. Magnetic resonance spectroscopic imaging (i.e., spatially resolved spectroscopy in vivo) is a highly promising technique by which to investigate endogenous neurogenesis noninvasively. A distinct feature in nuclear magnetic resonance spectra (i.e., a lipid signal at 1.28 ppm) was recently attributed specifically to NPCs in vitro and to neurogenic regions in vivo. Here, we demonstrate that although this 1.28-ppm biomarker is present in NPC cultures, it is not specific for the latter. The 1.28-ppm marker was also evident in mesenchymal stem cells and in non-stem cell lines. Moreover, it was absent in freshly isolated NPCs but appeared under conditions favoring growth arrest or apoptosis; it is initiated by induction of apoptosis and correlates with the appearance of mobile lipid droplets. Thus, although the 1.28-ppm signal cannot be considered as a specific biomarker for NPCs, it might still serve as a sensor for processes that are tightly associated with neurogenesis and NPCs in vivo, such as apoptosis or stem cell quiescence. However, this requires further experimental evidence. The present work clearly urges the identification of additional biomarkers for NPCs and for neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2008-0816DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
nuclear magnetic
8
neural progenitor
8
progenitor cells
8
stem cell
8
npcs
6
resonance biomarker
4
biomarker neural
4
cells neurogenesis?
4
vivo
4

Similar Publications

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

BACKGROUND Chiari malformation type 1 occurs when the cerebellar tonsils are pushed into the spinal canal, which can result in syringomyelia. This retrospective study from a single center evaluated outcomes in 89 patients with Chiari malformation type-I (CM-I) and syringomyelia treated with an arachnoid-preserving technique between 2016 and 2023. MATERIAL AND METHODS A retrospective analysis was conducted at a tertiary referral center, involving 88 adult patients and 1 adolescent patient aged 14 to 61 years, with diagnosis by MRI and treated for CM-I with syringomyelia between 2016 and 2023, using the arachnoid-preserving technique.

View Article and Find Full Text PDF

Objective: To investigate the predictive ability of the MRI-based vertebral bone quality (VBQ) score for pedicle screw loosening following instrumented transforaminal lumbar interbody fusion (TLIF).

Methods: Data from patients who have received one or two-level instrumented TLIF from February 2014 to March 2015 were retrospectively collected. Pedicle screw loosening was diagnosed when the radiolucent zone around the screw exceeded 1 mm in plain radiographs.

View Article and Find Full Text PDF

Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis.

View Article and Find Full Text PDF

Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward identifying high-risk patients, understanding neurological symptoms, evaluating treatment effects, and predicting outcomes. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!