Fabrication of two-dimensional polymer arrays: template synthesis of polypyrrole between redox-active coordination nanoslits.

Angew Chem Int Ed Engl

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Published: December 2008

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200803846DOI Listing

Publication Analysis

Top Keywords

fabrication two-dimensional
4
two-dimensional polymer
4
polymer arrays
4
arrays template
4
template synthesis
4
synthesis polypyrrole
4
polypyrrole redox-active
4
redox-active coordination
4
coordination nanoslits
4
fabrication
1

Similar Publications

Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems.

Nanomicro Lett

January 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.

The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.

View Article and Find Full Text PDF

Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.

View Article and Find Full Text PDF

Innovative applications of MXenes in dialysis: enhancing filtration efficiency.

Nanoscale

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.

MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.

View Article and Find Full Text PDF

In-Plane Transition-Metal Dichalcogenide Junction with Nearly Zero Interfacial Band Offset.

ACS Nano

January 2025

Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Advanced Research Institute of Multidisciplinary Science, and School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Two-dimensional in-plane transition-metal dichalcogenide (TMD) junctions have a range of potential applications in next-generation electronic devices. However, limited by the difficulties in ion implantation on 2D systems, the fabrication of the in-plane TMD junctions still relies on the lateral epitaxy of different materials, which always induces lattice mismatch and interfacial scattering. Here, we report the in-plane TMD junction formed with monolayer (ML) PtTe at the boundary of ML and bilayer graphene on SiC.

View Article and Find Full Text PDF

Functionalization of Graphene by Interfacial Engineering in Thermally Conductive Nanofibrillated Cellulose Films.

Langmuir

January 2025

Research Center of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai 200444, P. R. China.

Flexible nanocomposites incorporating nanofibrillated cellulose (NFC) hold significant promise for thermal management applications. However, their heat dissipation performance is primarily constrained by the interfacial thermal resistance (). In this work, 1-pyrenemethylamine hydrochloride (PyNH) noncovalent functionalized graphene subsequently self-assembled with NFC through a vacuum-assisted filtration technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!