The hypothesis that a high-fat parenteral regimen was beneficial for respiratory gas exchanges, in comparison with a high-glucose regimen, was tested in a paired crossover design. Ten parenterally fed newborn infants with no respiratory problems received two 5-day isoenergetic and isonitrogenous regimens that differed in their nonprotein source of energy; the level of fat intake (low fat (LF) 1 gm.kg-1.day-1; high fat (HF) 3 gm.kg-1.day-1) varied inversely with that of glucose. Continuous transcutaneous PO2 (tcPO2) and PCO2 (tcPCO2), respiratory gas exchange (indirect calorimetry), and plasma arachidonate metabolites were measured at the end of each regimen. Oxygen consumption and resting energy expenditure were not affected by modification of the source of energy. However, carbon dioxide production (VCO2) was higher during LF than during HF (6.9 +/- 0.2 vs 6.2 +/- 0.1 ml.kg-1.min-1; p less than 0.01), as was the respiratory quotient (1.08 +/- 0.02 vs 0.96 +/- 0.02; p less than 0.001). Despite the differences in VCO2, the tcPCO2 was not affected, suggesting adequate pulmonary compensation during LF, as documented by the higher minute ventilation (160 +/- 7 vs 142 +/- 5 ml.kg-1.min-1; p less than 0.01). The lower tcPO2 during the HF regimen (73.8 +/- 2.8 vs 68.8 +/- 2.6 mm Hg; p less than 0.015) indicated a disturbance at the alveolocapillary level induced by the lipid emulsion. No differences were found in circulating levels of prostaglandins and thromboxanes. The substitution of glucose for lipid did not modify fat storage (2.1 +/- 0.3 vs 2.1 +/- 0.3 gm.kg-1.day-1). We conclude that the supposed beneficial effect of a fat emulsion on respiratory gas exchange is questionable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-3476(05)81857-8 | DOI Listing |
Sci Rep
January 2025
Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China.
In recent years, particularly since the outbreaks of scarlet fever and invasive group A streptococcal diseases/infections (iGAS) in several European countries in 2022, iGAS has garnered widespread attention. Recently, Japan experienced an outbreak of a specific type of iGAS, streptococcal toxic shock syndrome (STSS). The outbreak was reported under the label"flesh-eating bacteria,"emphasizing the pathogenic potential of group A streptococcus (GAS).
View Article and Find Full Text PDFPediatr Crit Care Med
January 2025
Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom.
Objectives: A conservative oxygenation strategy is recommended in adult and pediatric guidelines for the management of acute respiratory distress syndrome to reduce iatrogenic lung damage. In the recently reported Oxy-PICU trial, targeting peripheral oxygen saturations (Spo2) between 88% and 92% was associated with a shorter duration of organ support and greater survival, compared with Spo2 greater than 94%, in mechanically ventilated children following unplanned admission to PICU. We investigated whether this benefit was greater in those who had severely impaired oxygenation at randomization.
View Article and Find Full Text PDFChina CDC Wkly
December 2024
National Center for Occupational Safety and Health, NHC, Beijing, China.
Introduction: Pneumoconiosis represents the most prevalent occupational disease in China, with coal workers' pneumoconiosis (CWP) showing the highest incidence. Analysis of volatile organic compounds (VOCs) in the exhaled breath of CWP patients may provide novel insights into its pathogenesis.
Methods: Study data were collected through questionnaires and medical examinations.
Surgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!