The protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling and inflammatory gene expression, both in the immune system and in the central nervous system (CNS). Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following inoculation with the Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Therefore, it became essential to investigate the mechanisms of TMEV-induced inflammation in the CNS of SHP-1-deficient mice. Herein, we show that the expression of several genes relevant to inflammatory demyelination in the CNS of infected me/me mice is elevated compared to that in wild-type mice. Furthermore, SHP-1 deficiency led to an abundant and exclusive increase in the infiltration of high-level-CD45-expressing (CD45(hi)) CD11b(+) Ly-6C(hi) macrophages into the CNS of me/me mice, in concert with the development of paralysis. Histological analyses of spinal cords revealed the localization of these macrophages to extensive inflammatory demyelinating lesions in infected SHP-1-deficient mice. Sorted populations of CNS-infiltrating macrophages from infected me/me mice showed increased amounts of viral RNA and an enhanced inflammatory profile compared to wild-type macrophages. Importantly, the application of clodronate liposomes effectively depleted splenic and CNS-infiltrating macrophages and significantly delayed the onset of TMEV-induced paralysis. Furthermore, macrophage depletion resulted in lower viral loads and lower levels of inflammatory gene expression and demyelination in the spinal cords of me/me mice. Finally, me/me macrophages were more responsive than wild-type macrophages to chemoattractive stimuli secreted by me/me glial cells, indicating a mechanism for the increased numbers of infiltrating macrophages seen in the CNS of me/me mice. Taken together, these findings demonstrate that infiltrating macrophages in SHP-1-deficient mice play a crucial role in promoting viral replication by providing abundant viral targets and contribute to increased proinflammatory gene expression relevant to the effector mechanisms of macrophage-mediated demyelination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612370PMC
http://dx.doi.org/10.1128/JVI.01210-08DOI Listing

Publication Analysis

Top Keywords

me/me mice
20
gene expression
12
shp-1-deficient mice
12
mice
11
macrophages
9
phosphatase shp-1
8
demyelinating disease
8
inflammatory gene
8
me/me
8
inflammatory demyelinating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!