Dedicated finite elements for electrode thin films on quartz resonators.

IEEE Trans Ultrason Ferroelectr Freq Control

Dept. of Civil & Environ. Eng., Rutgers Univ., Piscataway, NJ, USA.

Published: August 2008

AI Article Synopsis

Article Abstract

The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2008.854DOI Listing

Publication Analysis

Top Keywords

finite element
12
electrode
8
electrode thin
8
thin films
8
quartz resonators
8
element analysis
8
mesh resolution
8
electrode elements
8
elements poor
8
poor aspect
8

Similar Publications

Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Background: Unilateral sacral fractures with posterior ring instability represent a prevalent type of posterior pelvic ring fracture. While lumbo-pelvic fixation is recognized as a highly stable method, the sufficiency of unilateral lumbo-pelvic fixation (ULF) for such fractures remains under debate.

Purpose: This study aims to assess the biomechanical stability of ULF compared to traditional bilateral lumbo-pelvic fixation (BLF) and triangular osteosynthesis (TO), incorporating clinical observations, and previous biomechanical data.

View Article and Find Full Text PDF

Background: The most common postoperative complication of the Sauvé‒Kapandji (S-K) procedure is proximal ulnar stump instability. The distal oblique bundle (DOB) is a stable tissue used to stabilize the distal radioulnar joint. This study created finite-element models of the distal oblique bundle (DOB) to determine its effect on the proximal ulnar stump instability encountered during the Sauvé‒Kapandji procedure.

View Article and Find Full Text PDF

Objectives: To assess the effect of occlusion and implant number/position on stress distribution in Kennedy Class II implant-assisted removable partial denture (IARPD).

Materials And Methods: IARPDs were designed in six models: with one implant (bone level with a platform of 4 mm and length of 10 mm) at the site of (I) canine, (II) between first and second premolars, (III) first molar, (IV) second molar, or two implants at the sites of (V) canine-first molar, and (VI) canine-second molar. A conventional RPD served as control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!