AI Article Synopsis

Article Abstract

The design, synthesis, and X-ray crystallographic analysis of three simple diaryl-urea based anion receptors possessing an amide moiety on one of the aryl groups, and an electron withdrawing CF(3) group on the other, is described. The three receptors differ only in the position of the amide functionality relative to the hydrogen bonding urea moiety (being para, meta, and ortho for 1, 2, and 3, respectively). This simple modification was shown to have a significant effect on the anion recognition ability, the strength of the recognition process, and the stoichiometry (host/guest) for these sensors. We demonstrate, by using both UV-vis absorption and (1)H NMR spectroscopy, that these factors are caused by the ability of the amide moiety to both modulate the anion binding selectivity and the sensitivity of the urea moiety. We also demonstrate that, in the case of 1 and 2, this anion recognition at the urea moiety leads to concomitant activation (through enhanced inductive effect) in the amide functionality toward anions, which leads to the formation of an overall 1:2 (sensor/anion) binding stoichiometry for these receptors. This "activation" we describe as being an example of a "positive allosteric activation" by the urea site, caused directly by the first anion binding interaction, which to the best of our knowledge, has not been previously demonstrated for anion recognition and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo8014424DOI Listing

Publication Analysis

Top Keywords

urea moiety
12
anion recognition
12
recognition sensing
8
"positive allosteric
8
amide moiety
8
amide functionality
8
anion binding
8
anion
6
recognition
5
moiety
5

Similar Publications

In this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.

View Article and Find Full Text PDF

Fluoride binding-modulated supramolecular chirality of urea-containing triarylamine and its photo-manifestation.

Nanoscale

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.

In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions.

View Article and Find Full Text PDF

Skin Hydration by Natural Moisturizing Factors, a Story of H-Bond Networking.

J Phys Chem B

January 2025

INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.

Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).

View Article and Find Full Text PDF

Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA).

View Article and Find Full Text PDF

A series of novel carnosic acid derivatives incorporating urea moieties at the C-20 position was synthesized and evaluated for their antiproliferative activity against the HCT116 colorectal cancer cell line. Most derivatives demonstrated enhanced antiproliferative activity compared to that of carnosic acid . The most promising derivatives were tested in other colorectal cancer cell lines (SW480, SW620, and Caco-2), melanoma (A375), and pancreatic cancer (MiaPaca-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!