Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept of model chemistries within hybrid QM/MM calculations has been addressed through analysis of the polarization energy determined by two distinct approaches based on (i) induced charges and (ii) induced dipoles. The quantum mechanical polarization energy for four configurations of the water dimer has been determined for a range of basis sets using Morokuma energy decomposition analysis. This benchmark value has been compared to the fully classical polarization energy determined using the induced dipole approach, and the molecular mechanics polarization energy calculated using induced charges within the MM region of hybrid QM/MM calculations. From the water dimer calculations, it is concluded that the induced charge approach is consistent with medium sized basis set calculations whereas the induced dipole approach is consistent with large basis set calculations. This result is highly relevant to the concept of QM/MM model chemistries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp710168q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!