Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE.

J Biomed Mater Res B Appl Biomater

Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: July 2009

Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31265DOI Listing

Publication Analysis

Top Keywords

wear resistance
16
high-pressure crystallization
16
radiation crosslinked
8
replacement prostheses
8
radiation crosslinking
8
mechanical properties
8
stress xpe
8
ultimate strain
8
strain ultimate
8
ultimate stress
8

Similar Publications

High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.

View Article and Find Full Text PDF

Surface Fluorination of Silicone Rubber with Enhanced Stain Resistance and Slip Properties.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.

Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.

View Article and Find Full Text PDF

This study employed a high-speed rotating crushing process to modify pyrolyzed carbon black (CBp) using self-lubricating and low-friction polytetrafluoroethylene (PTFE). The effects of PTFE content on the dispersion, mechanical properties, wear resistance, and thermal stability of modified PTFE-CBp/natural rubber (NR) composites were investigated. The rotating crushing process from the high-speed grinder altered the physical structure of PTFE, forming tiny fibrous structures that interspersed among the CBp particles.

View Article and Find Full Text PDF

CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.

View Article and Find Full Text PDF

Sensor for a Solid-Liquid Tribological System.

Sensors (Basel)

January 2025

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.

Solid-liquid lubrication systems have been widely used to enhance tribological behaviors. Alongside offering exceptional lubrication and wear-resistance performance, the active control of the tribological behavior of lubrication systems in accordance with service conditions is equally critical. To achieve this goal, accurately monitoring the condition of the lubrication system is fundamental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!