We report the association of testicular Fer, a non-receptor tyrosine kinase, with acrosome development and remodeling of the acrosome-associated acroplaxome plate during spermatid head shaping. A single gene expresses two forms of Fer tyrosine kinases in testis: a somatic form (FerS) and a truncated testis-type form (FerT). FerT transcript variants are seen in spermatocytes and spermatids. FerS transcripts are not detected in round spermatids but are moderately transcribed in spermatocytes. FerT protein is associated with the spermatid medial/trans-Golgi region, proacrosomal vesicles, the cytosolic side of the outer acrosome membrane and adjacent to the inner acrosome membrane facing the acroplaxome. FerT coexist in the acroplaxome with phosphorylated cortactin, a regulator of F-actin dynamics. We propose that FerT participates in acrosome development and that phosphorylated cortactin may contribute to structural changes in F-actin in the acroplaxome during spermatid head shaping.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.21789DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
8
transcript variants
8
acrosome development
8
spermatid head
8
head shaping
8
acrosome membrane
8
phosphorylated cortactin
8
fert
7
expression fer
4
fer testis
4

Similar Publications

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF

Fedratinib is a predominantly JAK2 inhibitor that has shown efficacy in untreated and ruxolitinib-exposed patients with myelofibrosis (MF). Based on randomized clinical trial data, it is approved for use in patients with International Prognostic Scoring System (IPSS) or Dynamic International Prognostic Scoring System (DIPSS) intermediate-2 or high-risk disease and is distinguished from ruxolitinib in that it can be administered without dose reduction in patients with thrombocytopenia, to a platelet count above 50,000/µL. In these trials, fedratinib achieved significant spleen volume reduction in ~30-45% of patients and improvement in total symptom scores in 35-40% with good tolerability.

View Article and Find Full Text PDF

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!