Aqueous-only, pH-induced nanoassembly of dual pKa-driven contraphilic block copolymers.

Chem Commun (Camb)

Department of Chemistry, Department of Radiology, Washington University in Saint Louis, Saint Louis, MO 63130, USA.

Published: November 2008

pH-Responsive block copolymers, having two segments with functionalities of differing pK(a), were prepared by NMP, providing a "green" route to the assembly of core-shell functionalizable nanostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703793PMC
http://dx.doi.org/10.1039/b810934fDOI Listing

Publication Analysis

Top Keywords

block copolymers
8
aqueous-only ph-induced
4
ph-induced nanoassembly
4
nanoassembly dual
4
dual pka-driven
4
pka-driven contraphilic
4
contraphilic block
4
copolymers ph-responsive
4
ph-responsive block
4
copolymers segments
4

Similar Publications

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

X-ray-Triggered Activation of Polyprodrugs for Synergistic Radiochemotherapy.

Biomacromolecules

December 2024

School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

X-ray-induced photodynamic therapy (XPDT) can penetrate deeply into the tumor tissues to overcome the disadvantage of conventional PDT. However, the therapeutic efficacy of XPDT in cancer therapy is still restricted due to the insufficient reactive oxygen species (ROS) generation at a relatively low irradiation dosage. Herein, we present the tumor pH and ROS-responsive polyprodrug micelles to load the X-ray photosensitizer verteporfin (VP) as an ROS production enhancer.

View Article and Find Full Text PDF

Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!