AI Article Synopsis

  • Avian Pancreatic Polypeptide (aPP) is a 36-residue protein whose stability is primarily influenced by non-bonded interactions rather than the hydrophobic effect.
  • Aromatic residues play a crucial role in both local secondary structure stability and the overall tertiary fold stability due to their involvement in various non-bonded interactions.
  • Calculations using BHandHLYP/cc-pVTZ reveal that these aromatic interactions contribute significantly to the protein's stability, with energies of weakly polar interactions being comparable to hydrogen bonds.

Article Abstract

Avian Pancreatic Polypeptide is a 36 residue protein that exhibits a tertiary fold. Results of previous experimental and computational studies indicate that the structure of aPP is stabilized more by non-bonded interactions than by the hydrophobic effect. Aromatic residues are known to participate in a variety of long range non-bonded interactions, with both backbone atoms and the atoms of other side-chains, which could be responsible, in part, for the stability of both the local secondary structure and the tertiary fold. The effect of these aromatic interactions on the stability of aPP was calculated using BHandHLYP/cc-pVTZ. Aromatic residues were shown to participate in multiple hydrogen bonded and weakly polar interactions in the secondary structure. The energies of the weakly polar interactions are comparable with those of hydrogen bonds. Aromatic residues were also shown to participate in multiple weakly polar interactions across the tertiary fold, again with energies similar to those of hydrogen bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577375PMC
http://dx.doi.org/10.1002/qua.21521DOI Listing

Publication Analysis

Top Keywords

aromatic residues
16
tertiary fold
12
residues participate
12
weakly polar
12
polar interactions
12
avian pancreatic
8
pancreatic polypeptide
8
non-bonded interactions
8
secondary structure
8
participate multiple
8

Similar Publications

Amino Acids Frequency and Interaction Trends: Comprehensive Analysis of Experimentally Validated Viral Antigen-Antibody Complexes.

Mol Biotechnol

January 2025

Innoplexus Consulting Services Pvt Ltd, Floor 7Th, Midas Tower, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India.

Antibodies have specific binding capabilities and therapeutic potential for treating various diseases, including viral infections. The amino acid composition of the hypervariable complementarity determining regions (CDR) loops and the framework regions (FR) are the determining factors for the affinity and therapeutic efficacy of the antibodies. In this study selected and curated, 77 viral antigen-human antibody complexes from Protein data bank from the Thera-SAbdab database were analyzed.

View Article and Find Full Text PDF

Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.

J Gen Physiol

March 2025

Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia.

Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures.

View Article and Find Full Text PDF

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

Thiol-Based Redox Molecules: Potential Antidotes for Acrylamide Toxicity.

Antioxidants (Basel)

November 2024

Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38), and c-Jun-N-terminal-kinases (JNKs).

View Article and Find Full Text PDF

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!