Facial hydraulic fluid injection injury.

Otolaryngol Head Neck Surg

Department of Otolaryngology-Head and Neck Surgery, Naval Hospital, Camp Pendleton, California, USA.

Published: November 2008

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.otohns.2008.07.025DOI Listing

Publication Analysis

Top Keywords

facial hydraulic
4
hydraulic fluid
4
fluid injection
4
injection injury
4
facial
1
fluid
1
injection
1
injury
1

Similar Publications

Background: Medical simulation is relevant for training medical personnel in the delivery of medical and trauma care, with benefits including quantitative evaluation and increased patient safety through reduced need to train on patients.

Methods: This paper presents a prototype medical simulator focusing on ocular and craniofacial trauma (OCF), for training in management of facial and upper airway injuries. It consists of a physical, electromechanical representation of head and neck structures, including the mandible, maxillary region, neck, orbit and peri-orbital regions to replicate different craniofacial traumas.

View Article and Find Full Text PDF

To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.

View Article and Find Full Text PDF

Accurate identification of coal and gangue is a crucial guarantee for efficient and safe mining of top coal caving face. This article proposes a coal-gangue recognition method based on an improved beluga whale optimization algorithm (IBWO), convolutional neural network, and long short-term memory network (CNN-LSTM) multi-modal fusion model. First, the mutation and memory library mechanisms are introduced into the beluga whale optimization to explore the solution space fully, prevent falling into local optimum, and accelerate the convergence process.

View Article and Find Full Text PDF

In response to the frequent occurrence of high-energy microseismic events in coal mines in China, a back propagation neural network (BPNN) prediction model based on surface subsidence data has been proposed to provide a basis for safely and efficiently predicting coal mine disasters. Theoretical research on the relationship between surface displacement, mining disturbance, and high-energy microseismic event levels has demonstrated a significant correlation among these factors. When there is a sudden increase or decrease in surface displacement or mining disturbance, the advancing working face typically exhibits dynamic characteristics.

View Article and Find Full Text PDF

Influenced by various factors such as the complex environment and high key layers in coal mines, hydraulic fracturing technology has gradually become the main means of controlling the hard roof strata to prevent and control rockburst in recent years, which can effectively release the stress on the roof, reduce the intensity of pressure, and ensure the safe and efficient mining of the working face in coal mines. However, the current research on hydraulic fracturing to prevent and control rockburst is mostly limited to optimizing fracturing parameters and monitoring and evaluating fracturing effects, and there are few studies on blank sections, which cannot guarantee the overall prevention and control effect of rockburst, or increase unnecessary construction costs. In this paper, for the directional long borehole staged hydraulic fracturing project, triangular-type blank sections and regular-type blank sections are defined, and the rockburst prevention and control effects of fracturing sections and triangular-type blank sections during fracturing are compared and analyzed by the underground-ground integrated microseismic monitoring technology and transient electromagnetic detection technology, and the rockburst prevention and control effects of fracturing sections and regular-type blank sections during the coal extraction period are compared and analyzed by the underground-ground integrated microseismic monitoring data such as microseismic energy level and frequency as well as the online stress monitoring data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!