Autism is a complex genetic disorder, but single-gene disorders with a high prevalence of autism offer insight into its pathogenesis. Recent evidence suggests that some molecular defects in autism may interfere with the mechanisms of synaptic protein synthesis. We propose that aberrant synaptic protein synthesis may represent one possible pathway leading to autistic phenotypes, including cognitive impairment and savant abilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2008.10.017 | DOI Listing |
Mol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.
SNARE-dependent mast cell (MC) exocytosis causes the release of a wide variety of mediators with important physiological/pathological consequences. Unlike synaptic transmission in the brain, which relies primarily on one set of exocytic SNAREs (i.e.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein complex drives membrane fusion, and this process is further aided by accessory proteins, including complexin and α-synuclein. To understand the molecular mechanism underlying membrane fusion, we introduce an all-atom molecular dynamics (MD) simulation method. This method is used to understand and predict the conformations of protein and lipids, membrane geometry, and their interaction at femtosecond precision, by describing complex chemical systems with atomic models.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!