Two patients in a consanguineous Indian family with infantile glycogenosis type II were found to have a G to A transition in exon 11 of the human lysosomal alpha-glucosidase gene. Both patients were homozygous and both parents were heterozygous for the mutant allele. The mutation causes a Glu to Lys substitution at amino acid position 521, just three amino acids downstream from the catalytic site at Asp-518. The mutation was introduced in wild type lysosomal alpha-glucosidase cDNA and the mutant construct was expressed in vitro and in vivo. The Glu to Lys substitution is proven to account for the abnormal physical properties of the patients lysosomal alpha-glucosidase precursor and to prevent the formation of catalytically active enzyme. In homozygous form it leads to the severe infantile phenotype of glycogenosis type II.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(91)91906-sDOI Listing

Publication Analysis

Top Keywords

lysosomal alpha-glucosidase
16
glycogenosis type
12
human lysosomal
8
alpha-glucosidase gene
8
infantile glycogenosis
8
glu lys
8
lys substitution
8
identification point
4
point mutation
4
mutation human
4

Similar Publications

Background: Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.

View Article and Find Full Text PDF

Background: Late-onset Pompe disease (LOPD) is an autosomal recessive lysosomal storage disorder that results in severe progressive proximal muscle weakness. Over time, reductions in muscle strength result in respiratory failure and a loss of ambulation. Delayed diagnosis of LOPD deprives patients of treatments that can enhance quality of life and potentially slow disease progression.

View Article and Find Full Text PDF

Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.

View Article and Find Full Text PDF

Digital microfluidic platform for dried blood spot newborn screening of lysosomal storage diseases in Campania region (Italy): Findings from the first year pilot project.

Mol Genet Metab

December 2024

Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy. Electronic address:

Background: Newborn screening (NBS) is a simple, non-invasive test that allows for the early identification of genetic diseases within the first days of a newborn's life. The aim of NBS is to detect potentially fatal or disabling conditions in newborns as early as possible, before the onset of disease symptoms. Early diagnosis enables timely treatments and improves the quality of life for affected patients.

View Article and Find Full Text PDF

Echium amoenum (borage) powder (EAP) is consumed traditionally and is known to possess health-promoting effects. In this research, application of Echium amoenum (borage) powder (EAP) at levels of zero, 1 and 2 % w/w was investigated in the production of biscuit as a widely consumed snack and some characteristics of dough and biscuit samples were evaluated. By adding EAP and increasing its level, water absorption values and dough stability increased (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!