Refolding and kinetic characterization of the phosphodiesterase-8A catalytic domain.

Protein Expr Purif

Laboratory of Structure Biology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.

Published: March 2009

Cyclic nucleotide phosphodiesterase-8 (PDE8) hydrolyzes the second messenger cAMP and is involved in many biological processes such as testosterone production. Although the bacterial and mammalian expression systems have been extensively tried, production of large quantity of soluble and active PDE8 remains to be a major hurdle for pharmacological and structural studies. Reported here is a detailed protocol of refolding and purification of large quantity of the PDE8A1 catalytic domain (residues 480-820) and kinetic characterization of the refolded protein. This protocol yielded about 8 mg of the PDE8A catalytic domain from 2l Escherichia coli culture, which has at least 40-fold higher activity than those reported in literature. The PDE8A1 catalytic domain has k(cat) of 4.0 s(-1) for Mn(2+) and 2.9s(-1) for Mg(2+), and the K(M) values of 1-1.8 microM. In addition, the PDE8A1 (205-820) fragment that contains both PAS and catalytic domains was expressed in E. coli and refolded. This PDE8A1 (205-820) fragment has k(cat) of 1.1 s(-1) and K(M) of 0.28 microM, but aggregated at high concentration. The K(M) of PDE8A1 (205-820) is 2- to 7-fold higher than the K(M) values of 40-150 nM for the full-length PDE8s in literature, but about 6-fold lower than that of the catalytic domain. Thus, the K(M) difference likely implies an allosteric regulation of the PDE8A activity by its PAS domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677826PMC
http://dx.doi.org/10.1016/j.pep.2008.10.005DOI Listing

Publication Analysis

Top Keywords

catalytic domain
20
pde8a1 205-820
12
kinetic characterization
8
large quantity
8
pde8a1 catalytic
8
kcat s-1
8
205-820 fragment
8
catalytic
6
domain
6
pde8a1
5

Similar Publications

: The mammalian target of the rapamycin (mTOR) signaling pathway is a central regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling contributes to many human diseases, including cancer, diabetes, and obesity. Therefore, inhibitors against mTOR's catalytic kinase domain (KD) have been developed and have shown significant antitumor activities, making it a promising therapeutic target.

View Article and Find Full Text PDF

Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ().

Int J Mol Sci

December 2024

State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China.

Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the gene as closely associated with the resistance of yellow drum () to . Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa).

View Article and Find Full Text PDF

Biliverdin reductase B (BLVRB) is a redox regulator that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of multiple substrates, including flavins and biliverdin-β. BLVRB has emerging roles in redox regulation and post-translational modifications, highlighting its importance in various physiological contexts. In this study, we explore the structural and functional differences between human BLVRB and its hyrax homologue, focusing on evolutionary adaptations at the active site and allosteric regions.

View Article and Find Full Text PDF

Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic spp. that cause severe diseases in fish.

View Article and Find Full Text PDF

Diversity of Endolysin Domain Architectures in Bacteriophages Infecting Bacilli.

Biomolecules

December 2024

Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia.

The increasing number of antibiotic-resistant bacterial pathogens is a serious problem in medicine. Endolysins are bacteriolytic enzymes of bacteriophages, and a promising group of enzymes with antibacterial properties. Endolysins of bacteriophages infecting Gram-positive bacteria have a modular domain organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!