Peroxisome proliferators (PPs) are a class of compounds that exert their nominal effects through the peroxisome proliferator-activated receptors. PPs, among which clofibrate (CF), have been extensively studied for their hepatocarcinogenic properties in rodents, generally ascribed to their antiapoptotic action. However, previous results demonstrated that various PPs may also have apoptogenic properties. CF, in particular, promptly induces a massive apoptotic death in cell lines established from murine or human hepatomas and from breast or lung cancers as well. The present study was aimed at elucidating the apoptotic pathway(s) triggered by CF in AH-130 cells. The results show that CF-induced cell death is completely blocked by the poly-caspase inhibitor z-VAD-fmk and that caspases 3, 8, and 9 are early activated. Consistently, cytochrome c is released from mitochondria, and CF cytotoxicity is inhibited by cyclosporine A, partially at least. In addition, the occurrence of endoplasmic reticulum (ER) stress is suggested by the observation that the levels of phosphorylated eIF2alpha and JNK increase in CF-treated cells, while the caspase 2 precursor protein levels are concurrently reduced. Finally, some degree of calpain activation also takes place, as suggested by the appearance of fodrin cleavage products. The present findings demonstrate that CF-induced apoptosis in the Yoshida AH-130 cells basically is a caspase-dependent process that involves more than a single mechanisms. Activation of the intrinsic apoptotic pathway and ER stress both play a major and concurrent role, while calpain activation seems to have only a marginal part in the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2008.10.004 | DOI Listing |
Diseases
January 2025
Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
Background: Acute myeloid leukemia (AML) is a common and aggressive form of leukemia, yet current treatment strategies remain insufficient. Venetoclax, a BH3-mimetic approved for AML treatment, induces Bcl-2-dependent apoptosis, though its therapeutic efficacy is still limited. Therefore, new strategies to enhance the effect of venetoclax are highly sought.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown.
View Article and Find Full Text PDFMar Drugs
November 2024
BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea.
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived sp.
View Article and Find Full Text PDFFEBS Lett
December 2024
Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan.
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system.
View Article and Find Full Text PDFCancer Lett
December 2024
Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan. Electronic address:
KRAS inhibitors sotorasib and adagrasib have been approved for the treatment of KRAS-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRAS inhibitors must be developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!