The adverse effects of reactive oxygen species (ROS) on many aspects of reproduction are well documented. However, much less is known regarding the contribution of culture media to the oxidative stress of gametes during assisted reproductive techniques. This study measured the generation of ROS by culture media during IVF procedures and its effects on human oocytes. Commercially supplied culture media generated ROS at various rates, depending on the composition, whereas follicular fluid generated ROS at a much lower level. The incubation of cumulus-oocyte complexes (COC) in culture media induced marked lipid peroxidation compared with levels found in freshly retrieved COC. This plasma membrane damage, measured with the quenching of cis-parinaric acid fluorescence assay, was attenuated by supplementation of the medium with alpha-tocopherol or catalase. Moreover, there was an association between ROS production by culture medium and thiolic content consumption within the oocytes, suggesting that the intracellular reduced glutathione pool was partially depleted during in-vitro manipulation. The results show that culture medium could damage oocytes (and consequently embryo development) depending on their composition, and it is proposed that current IVF protocols could be revised in order to decrease ROS generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1472-6483(10)60312-4 | DOI Listing |
J Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFHealth Expect
February 2025
Faculty of Communication, Culture and Society, Università della Svizzera italiana, Lugano, Switzerland.
Objectives: Grounded in the Health Empowerment Model, which posits that health literacy and patient empowerment are intertwined yet distinct constructs, this study investigates how the interplay of these factors influences attitudes toward seeking professional psychological help in members of online communities for mental health (OCMHs). This while acknowledging the multidimensionality of patient empowerment, encompassing meaningfulness, competence, self-determination, and impact.
Design And Methods: A cluster analysis of data gathered from 269 members of Italian-speaking OCMHs on Facebook has been performed.
Subst Use Misuse
January 2025
Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Introduction: Waterpipe tobacco (WT) is unique compared to other tobacco products. Retailers and manufacturers may promote WT products using different marketing appeals and sales propositions on popular digital marketing media. This study examined WT digital marketing content in the United States (U.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Columbus, OH, USA.
Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!