To study the effect of co-inoculation with plant growth-promoting rhizobacteria (PGPR) and Rhizobium, on yield and yield components of common bean (Phaseolus vulgaris L.) cultivars was investigated in 2 consecutive years under field condition of plant growing evidence indicates that soil beneficial bacteria can positively affect symbiotic performance of rhizobia. PGPR strains Pseudomonas fluorescens P-93 and Azospirillum lipoferum S-21 as well as two highly effective Rhizobium strains were used in this study. Common bean seeds of three cultivars were inoculated with Rhizobium singly or in a combination with PGPR to evaluate their effect on growth characters. A significant variation of plant growth in response to inoculation with Rhizobium strains was observed. Treatment with PGPR significantly increased pod per plant, number of seeds per pod, weight of 100 seed, weight of seeds per plant, weight of pods per plant, total dry matter in R6 as well as seed yield and protein content. Co-inoculation with Rhizobium and PGPR demonstrated a significant increase in the yield and yield components. The results showed that all treatments of bacteria increased yield; however, strains Rb-133 with Pseudomonas fluorescens P-93 gave the highest seed yield, number of pods per plant, weight of 100 seed, seed protein yield, number seed per pod, seed protein yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3923/pjbs.2008.1935.1939 | DOI Listing |
Radiat Oncol
January 2025
German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain.
Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFPlant Methods
January 2025
Faculty of Agriculture, Agriculture and Forestry University, Bharatpur, 13712, Nepal.
Background: Crossover interactions stemming from phenotypic plasticity complicate selection decisions when evaluating hybrid maize with superior grain yield and consistent performance. Consequently, a two-year, region-wide investigation of 45 hybrids maize across Nepal was performed with the aim of disclosing both site and wide adapted hybrids. Utilizing an innovative "ProbBreed" package, based on Bayesian probability analysis of randomized complete block designs with three replicated trials at each station, this study substantively streamlines hybrids maize selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!