The aims of this study were threefold: (1) to characterize and quantify the number, diameter and surface area of exposed dentinal tubules on the cross section of the human coronal dentin; (2) to determine if any such differences in these properties arise in relation to the distance from the dentinoenamel junction; and (3) to evaluate whether such differences can influence dentin hybridization. To accomplish these aims, scanning electron microscopy comparative observation was carried out on 60 prepared human premolars, which were divided into three groups of 20 samples each. The three sample groups were cut as follows: (1) in the central fissure region, one millimeter from the enamel-dentine junction; (2) halfway between the enamel-dentine junction and the pulp; and (3) one millimeter from the roof of the pulp chamber. Using one-way analysis of variance (one-way ANOVA) and a regression linear model, the data enumerated below were obtained. First, the mean number of the tubule openings was 19600/mm2 on the first level, 32400/mm2 on the second and 42300/mm2 on the third. The mean tubule diameter on the first level was 0.67 microm, 1.52 microm on the second and 2.58 microm on the third. Finally, exposed tubules on the first level occupied 2.79% of of total dentinal surface area, 23.90% on the second, and 87.78% on the third level. Therefore, significant statistical differences (p < 0.01) between all three groups of the specimens for all three properties were observed, as well as positive correlation between the dentin depth and each of these properties. This indicates that the dentin structural variety, which ultimately determines adhesion to dentine, involves a complex interaction between biological material (dentin) and the particular adhesion system applied.
Download full-text PDF |
Source |
---|
BDJ Open
January 2025
Oral Radiology, Faculty of Dentistry, Cairo University, Giza, Egypt.
Aim: Clinical and radiographic evaluation of SDF versus MTA as indirect pulp capping agents in deeply carious first permanent molars.
Methodology: This study was conducted on (30) first permanent molars indicated for indirect pulp capping (IPC) randomly allocated to either SDF or MTA groups (n = 15). The molars were finally restored with glass hybrid glass ionomer restoration.
Am J Dent
December 2024
Department of Restorative Sciences, Division of Operative Dentistry and Biomaterials, University of North Carolina, Adams School of Dentistry, Chapel Hill, North Carolina, USA,
Purpose: To evaluate and compare: (1) the effect of the bacterial biofilm on the dentin mineral density at the restoration-tooth interface and (2) the mineralization potential of three resin-based restorative materials (RBRM).
Methods: 16 extracted human molars free of caries and cracks were collected and stored for disinfection. Each tooth received two standardized Class II preparations with the cervical margin placed in dentin.
J Esthet Restor Dent
January 2025
Magne Education, Beverly Hills, California, USA.
Objective: Chemicals used during canal disinfection and endodontic sealers have a deleterious effect on dentin bond strength. The aim of this study was to evaluate a novel clinical sequence to improve the resin-dentin microtensile bond strength (μTBS) to endodontically treated teeth.
Materials And Methods: Twenty human molars were distributed in four experimental groups (n = 5, N = 20): C-control group without exposure to any endodontic chemical substances (2.
J Dent Res
December 2024
State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.
View Article and Find Full Text PDFJ Dent (Shiraz)
December 2024
Dept. Conservative Dentistry and Endodontics, St.Joseph Dental College, Duggirala, Eluru, Andra Pradesh, India.
Statement Of The Problem: Dentin bonding with etch-and-rinse adhesives involves demineralizing the 5-8µm of the surface dentin to create micro space for resin infiltration. The presence of continuous fluid movement in dentin tubules and positive pulpal pressure prevents complete water replacement by resin monomers. This results in areas of demineralized dentin, which contain collagen fibers without resin infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!