Transmission Ultrasound Computed Tomography (CT) is strongly affected by the acoustic refraction properties of the imaged tissue, and proper modeling and correction of these effects is crucial to achieving high-quality image reconstructions. A method that can account for these refractive effects solves the governing Eikonal equation within an iterative reconstruction framework, using a wave-front tracking approach. Excellent results can be obtained, but at considerable computational expense. Here, we report on the acceleration of three Eikonal solvers (Fast Marching Method (FMM), Fast Sweeping Method (FSM), Fast Iterative Method (FIM)) on three computational platforms (commodity graphics hardware (GPUs), multi-core and cluster CPUs), within this refractive Transmission Ultrasound CT framework. Our efforts provide insight into the capabilities of the various architectures for acoustic wave-front tracking, and they also yield a framework that meets the interactive demands of clinical practice, without a loss in reconstruction quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-540-85990-1_34DOI Listing

Publication Analysis

Top Keywords

transmission ultrasound
12
ultrasound computed
8
computed tomography
8
wave-front tracking
8
physical-space refraction-corrected
4
refraction-corrected transmission
4
tomography computationally
4
computationally practical
4
practical transmission
4
tomography acoustic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!