Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10611860802201134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!