Amyloid-beta (Abeta) is one of the main factors to cause Alzheimer's disease. Although fibrillar Abeta (fAbeta) activates microglial cells that release toxic compounds to induce partial neuronal death, the mechanism of interaction between Abeta and microglia remains unclear. Therefore, we examined the interaction of microglial cells (BV2) and fAbeta on a gelatin-precoated plate. The binding was markedly enhanced by RhoA inactivation using Tat-C3, dominant negative RhoA, and si-RhoA. To identify the receptor for fAbeta, we tested various antibodies to mask receptors. Among them, anti-beta2-integrin antibody mostly suppressed cell binding to fAbeta. The incremental binding of cells induced by RhoA inhibition was also blocked by addition of anti-beta2-integrin antibody. These results suggest that RhoA inhibition stimulates beta2-integrin-mediated cell interaction to fAbeta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0b013e3283140f10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!